Evaluate $\int_0^\infty\frac{\sin^4x}{x^2}dx$ with $\int_0^\infty\frac{\sin x}{x}dx=\frac{\pi}{2}$$$$$ I use $\int_0^\infty\int_0^\infty e^{-x^2y}\sin x dy dx=\int_0^\infty\int_0^\infty e^{-x^2y}\sin x dx dy $ to evaluate the integration, I wonder how to use $\int_0^\infty\frac{\sin x}{x}dx=\frac{\pi}{2}$ to evaluate $\int_0^\infty\frac{\sin^4x}{x^2}dx$ more efficiently.
Asked
Active
Viewed 95 times
1 Answers
1
Hint. Integrate by parts. First set $$I=\int_0^{\infty}\frac{\sin^2x}{x^2}\mathrm dx.$$ Then we have that $$\int_0^{\infty}\frac{\sin^4x}{x^2}\mathrm dx=\sin^2x\int_0^{\infty}\frac{\sin^2x}{x^2}\mathrm dx-\int_0^{\infty}2\sin x\cos x\left(\int_0^{\infty}\frac{\sin^2x}{x^2}\mathrm dx\right)\mathrm dx=I\sin^2x-\int_0^{\infty}I\sin 2x\mathrm dx.$$
Now we have that $$I=\int_0^{\infty}\frac{\sin^2x}{x^2}\mathrm dx=\int_0^{\infty}\frac{\sin x}{x}\mathrm dx=π/2.$$ To see the first equality, integrate by parts again to get $$I=\int_0^{\infty}\frac{\sin^2x}{x^2}\mathrm dx=\sin^2x\int_0^{\infty}\frac{1}{x^2}+\int_0^{\infty}\frac{\sin 2x}{x}\mathrm dx= \int_0^{\infty}\frac{\sin 2x}{2x}\mathrm d(2x)=\int_0^{\infty}\frac{\sin y}{y}\mathrm dy.$$

Allawonder
- 13,327