You may write
$$
\begin{align}
\int_{0}^{\infty}\frac{\log x}{1+x^{2}}dx&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx+\int_{1}^{\infty}\frac{\log x}{1+x^{2}}dx\\\\
&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx-\int_{1}^{\infty}\frac{\log (1/x)}{1+\frac1{x^2}}\frac{dx}{x^2}\\\\
&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx-\int_{1}^{\infty}\frac{\log (1/x)}{1+\frac1{x^2}}\frac{dx}{x^2}\\\\
&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx-\int_{0}^{1}\frac{\log u}{1+u^{2}}du\quad (u=1/x)\\\\
&=0.
\end{align}
$$
Setting $\displaystyle u=\frac1x$, that is $\displaystyle x=\frac1u$ we get $\displaystyle dx=-\frac{du}{u^2}$, $\displaystyle \log x=-\log u$, $1 \mapsto 1,\,\infty \mapsto 0$, then
$$\color{blue}{\int_{1}^{\infty}\frac{\log x}{1+x^{2}}dx
=\int_{1}^{0}\frac{-\log u}{1+\frac1{u^{2}}}\left(-\frac{du}{u^2}\right)=\int_{1}^{0}\frac{\log u}{1+u^{2}}du=-\int_{0}^{1}\frac{\log u}{1+u^{2}}du.}$$