Possible Duplicate:
Convergence of integrals in $L^p$
Let $\{f_n\}$ be sequence of functions in $L^p$, $1\lt p \lt \infty$, which converge a.e. to a function $f\in L^p$. Suppose that there is a $M$ such that $\|f_n\| \leq M$ for all $n$. Then I would like to show that for each function $g\in L^q$ we have $$ \int fg = \lim \int f_ng.$$
Would the result hold true if $p =1$?
My Attempt:
I want to show $\left|\int (f_ng-fg)\right|\lt \varepsilon.$ I observe that
$$\left|\int (f_ng-fg)\right| \lt \int \left| f_n-f\right||g| \leq \|f_n-f\|_p \|g\|_q,$$
and
$$\|f_n-f\|_{L^p(E)}\leq M + \|f\|_{L^p(E)}.$$
Since $g\in L^q$,for every $\varepsilon \gt 0,\exists \delta \gt 0$ such if $\mu(E)\lt \delta$,
$$ \|g\| = \left(\int _E |g|^q\right)^{1/q} \lt \frac{\varepsilon}{2\left(M + \|f\|_{L^p(E)}\right)}.$$
I can also call on Egoroff, to find a set $E$ of measure less that $\varepsilon$ such $f_n$ converges uniformly on $E^c$. Thus for some $n\gt N$,
$$|f_n-f| \lt \frac{\varepsilon}{2(\mu(E^c))^{1/p}\|g\|_{L^q(E)}},$$ so that
$$\|f_n-f\|_{L^p(E^c)} \lt \frac{\varepsilon}{2\|g\|_{L^q(E^c)}}.$$
Thus, $$ \begin{align*} \|f_n-f\|_p \|g\|_q & = \|f_n-f\|_{L^p(E)}\|g\|_{L^q(E)} + \|f_n-f\|_{L^p(E^c)}\|g\|_{L^q(E^c)} \\ & \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{align*} $$
Please, is what I've done okay. I welcome criticisms and corrections. Thanks.
I also need help with the case $p=1$.
PS: This is not homework. It's a question in Royden's third edition, Chapter six.