I've recently come across the following identity $$ \displaystyle \sum_{k = 0}^n {n \choose k}^2= {2n \choose n} $$
A nice complex analysis proof (by Felix Marin, here) follows as: $\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align} \color{}{\large\sum_{k\ =\ 0}^{n}{n \choose k}^{2}}&= \sum_{k\ =\ 0}^{n}{n \choose k} \oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z^{k + 1}}\,{\dd z \over 2\pi\ic} =\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z} \sum_{k\ =\ 0}^{n}{n \choose k}\pars{1 \over z}^{k}\,{\dd z \over 2\pi\ic} \\[5mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z} \pars{1 + {1 \over z}}^{n}\,{\dd z \over 2\pi\ic} =\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{2n} \over z^{n + 1}}\,{\dd z \over 2\pi\ic} =\color{}{\large{2n \choose n}} \end{align}
Is there a way to generalise this technique to find the value of
$$ \displaystyle \sum_{k_1 + k_2 = 0}^n {n \choose k_1, k_2}^2 $$ where $$ {n \choose k_1, k_2} = \frac{n!}{(n-(k_1+k_2))!k_1!k_2!} $$ (please note that this is not the definition of the multinomial coefficient which would actually be $$ {n \choose k_1, k_2} = \frac{n!}{k_1!k_2!} $$)
tl;dr
Find the value of (if possible) $$ \displaystyle \sum_{k_1 + k_2 = 0}^n {n \choose k_1, k_2}^2 $$ using complex analytical techniques.
EDIT: If it helps, it is easy to show that $$ {n \choose k_1, k_2} = \frac{n!}{(n-(k_1+k_2))!k_1!k_2!} = {n \choose k_1} {n - k_1 \choose k_2} $$ A similar problem dealing with binomials and trinomials has been solved using complex analytic techniques here
@Christoph, I felt that it may show some relationship between the binomial and multinomial result.
– Black Apr 02 '15 at 18:32