I recently ran into this series: $$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}$$
Of course this is just a special case of the Beta Dirichlet Function , for $s=3$.
I had given the following solution: $$\begin{aligned} 1-\frac{1}{3^3}+\frac{1}{5^3}-\cdots &=\sum_{n=0}^{\infty}\frac{(-1)^n}{\left ( 2n+1 \right )^3} \\ &\overset{(*)}{=} \left ( 1+\frac{1}{5^3}+\frac{1}{9^3}+\cdots \right )-\left ( \frac{1}{3^3}+\frac{1}{7^3}+\frac{1}{11^3}+\cdots \right )\\ &=\sum_{n=0}^{\infty}\frac{1}{\left ( 4n+1 \right )^3} \; -\sum_{n=0}^{\infty}\frac{1}{\left ( 4n+3 \right )^3} \\ &= -\frac{1}{2\cdot 4^3}\psi^{(2)}\left ( \frac{1}{4} \right )+\frac{1}{2\cdot 4^3}\psi^{(2)}\left ( \frac{3}{4} \right )=\frac{1}{2\cdot 4^3}\left [ \psi^{(2)}\left ( 1-\frac{1}{4} \right )-\psi^{(2)}\left ( \frac{1}{4} \right ) \right ]\\ &=\frac{1}{2\cdot 4^3}\left [ 2\pi^3 \cot \frac{\pi}{4} \csc^2 \frac{\pi}{4} \right ] \\ &=\frac{\pi^3 \cot \frac{\pi}{4}\csc^2 \frac{\pi}{4}}{4^3}=\frac{\pi^3}{32} \end{aligned}$$
where I used polygamma identities and made use of the absolute convergence of the series at $(*)$ in order to re-arrange the terms.
Any other approach using Fourier Series, or contour integration around a square, if that is possible?