Problem
Given a Hilbert space $\mathcal{H}$.
Consider normal operators: $$N:\mathcal{D}(N)\subseteq\mathcal{H}\to\mathcal{H}:\quad N^*N=NN^*$$
Denote for readability: $$\mathcal{D}:=\mathcal{D}(N)=\mathcal{D}(N^*)$$
Regard a closed space: $$\mathcal{S}\leq\mathcal{H}:\quad\mathcal{H}=\mathcal{S}\oplus\mathcal{S}^\perp$$
Suppose invariance: $$N(\mathcal{S}\cap\mathcal{D})\subseteq\mathcal{S}\quad N(\mathcal{S}^\perp\cap\mathcal{D})\subseteq\mathcal{S}^\perp$$
Then it may still happen: $$\mathcal{D}\supsetneq\mathcal{D}\cap\mathcal{S}+\mathcal{D}\cap\mathcal{S}^\perp$$
Does someone have a nonexample?
Reference
For a preexample: Preliminary