Given a Hilbert space $\mathcal{H}$.
Consider a dense domain: $$\mathcal{D}\leq\mathcal{H}:\quad\overline{\mathcal{D}}=\mathcal{H}$$
Regard a closed subspace: $$\mathcal{S}\leq\mathcal{H}:\quad\mathcal{H}=\mathcal{S}\oplus\mathcal{S}^\perp$$
Then it may happen: $$\mathcal{D}\cap\left(\mathcal{S}\oplus\mathcal{S}^\perp\right)\supsetneq\mathcal{D}\cap\mathcal{S}+\mathcal{D}\cap\mathcal{S}^\perp$$ Does someone have an example at hand?