Observe that both terms of the desired identity vanish at $x=0$, then by differentiating (a finite sum and a primitive), it is sufficient to prove that
$$
\sum_{n=1}^{N} \cos ((2n-1)\theta)=\frac{\sin (2N\theta)}{2\sin\theta}.\tag1
$$
To prove $(1)$, here are some possible steps:
$$
\begin{align}
\sum_{n=1}^{N} \cos ((2n-1)\theta)&=\Re \sum_{n=1}^{N} e^{i(2n-1)\theta}\\\\
&=\Re\left( e^{i\theta}\frac{e^{2iN\theta}-1}{e^{2i\theta}-1}\right)\\\\
&=\Re\left( e^{i\theta}\frac{e^{iN\theta}\left(e^{iN\theta}-e^{-iN\theta}\right)}{e^{i\theta}\left(e^{i\theta}-e^{-i\theta}\right)}\right)\\\\
&=\Re\left( e^{iN\theta}\frac{2i\sin(N\theta)}{2i\sin\theta}\right)\\\\
&=\Re\left( \left(\cos (N\theta)+i\sin (N\theta)\right)\frac{\sin(N\theta)}{\sin\theta}\right)\\\\
&=\frac{\cos (N\theta)\sin (N\theta)}{\sin\theta}\\\\
&=\frac{\sin (2N\theta)}{2\sin\theta}.
\end{align}
$$
Hope this helps!
– user2543 Mar 11 '15 at 20:56