Let $X,Y$ and $Z$ be three Banach spaces with norms $\|\cdot\|_X$, $\|\cdot\|_Y$,$\|\cdot\|_Z$. Assume that $X\subset Y$ with compact "injection" and that $Y\subset Z$ with continuous injection. Then
$$\forall\epsilon>0, \exists C_{\epsilon}\geq0 $$
Satisfying $$\|u\|_Y\leq \epsilon \|u\|_X+C_{\epsilon}\|u\|_Z \ \ \forall u \in X.$$
My question are
I) Where can I find a proof of this result?
II) As a consequence of that how to prove
$$\max_{[0,1]}|u|\leq \epsilon\max_{[0,1]}|u'|+C_{\epsilon}\|u\|_{L^1{[0,1]}} \forall \in C^1({[0,1]})?$$