0

Show that:

$$\log(\sin(x)) = -\log(2) - \sum_{n \ge 1} \frac{\cos(2nx)}{n}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\log(\sin(x)) = \log(e^{ix} - e^{-ix}) - \log(2i)$$

$$= \log(e^{ix} - e^{-ix}) - \log(2) - \frac{i \pi}{2}$$

What next?

Lebes
  • 1,636

1 Answers1

1

$$e^{ix}-e^{-ix}=e^{ix}[1-e^{-2ix}]$$

$$\ln[e^{ix}-e^{-ix}]=ix+\ln[1-e^{-2ix}]$$

Now $\ln(1-x)=-\sum_{r=1}^\infty\dfrac{x^r}r$

Use Euler formula and equate the real and the imaginary parts

See also: Convergence for log 2

  • Wait so using: $$\sin^2(x) = \frac{1 - \cos(2x)}{2} = \frac{1 - e^{2ix}}{2}$$ – Lebes Feb 22 '15 at 10:48
  • @Lebes, No. We have $$\ln(1-e^{-2ix})=-\sum_{r=1}^{\infty}\frac{(e^{-2ix})^r}r$$ Now $(e^{-2ix})^r=e^{-i2rx}=\cos(2rx)-i\sin(2rx)$ – lab bhattacharjee Feb 22 '15 at 10:50
  • Okay so:

    $$\log(1- e^{-2ix}) = -\sum_{r=1}^{\infty}\frac{\cos(2rx)}{r} + i\sum_{r=1}^{\infty} \frac{\sin(2rx)}{r}$$

    But how to elimate $\sin$? @lab

    – Lebes Feb 22 '15 at 11:14
  • @Lebes, The answer has "equate the real and the imaginary parts" – lab bhattacharjee Feb 22 '15 at 11:15
  • I see. let the expression by $H$. Then: $\Im H = \sum_{r=1}^{\infty} \frac{\sin(2rx)}{r}$. And on the LHS it is $0i$ hence:

    $$\sum_{r=1}^{\infty} \frac{\sin(2rx)}{r}$$ Doesnt exist. So:

    $$\log(1 - e^{-2ix}) = -\sum_{r=1}^{\infty} \frac{\cos(2rx)}{r}$$

    And:

    $$1 - e^{-2ix} = 2\sin^2(x)$$

    So:

    $$\log(\sin^2(x)) - \log(2) = -\sum_{r=1}^{\infty}...$$

    That isnt correct though @lab

    – Lebes Feb 22 '15 at 11:22