Show that:
$$\log(\sin(x)) = -\log(2) - \sum_{n \ge 1} \frac{\cos(2nx)}{n}$$
$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$
$$\log(\sin(x)) = \log(e^{ix} - e^{-ix}) - \log(2i)$$
$$= \log(e^{ix} - e^{-ix}) - \log(2) - \frac{i \pi}{2}$$
What next?
Show that:
$$\log(\sin(x)) = -\log(2) - \sum_{n \ge 1} \frac{\cos(2nx)}{n}$$
$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$
$$\log(\sin(x)) = \log(e^{ix} - e^{-ix}) - \log(2i)$$
$$= \log(e^{ix} - e^{-ix}) - \log(2) - \frac{i \pi}{2}$$
What next?
$$e^{ix}-e^{-ix}=e^{ix}[1-e^{-2ix}]$$
$$\ln[e^{ix}-e^{-ix}]=ix+\ln[1-e^{-2ix}]$$
Now $\ln(1-x)=-\sum_{r=1}^\infty\dfrac{x^r}r$
Use Euler formula and equate the real and the imaginary parts
See also: Convergence for log 2
$$\log(1- e^{-2ix}) = -\sum_{r=1}^{\infty}\frac{\cos(2rx)}{r} + i\sum_{r=1}^{\infty} \frac{\sin(2rx)}{r}$$
But how to elimate $\sin$? @lab
– Lebes Feb 22 '15 at 11:14$$\sum_{r=1}^{\infty} \frac{\sin(2rx)}{r}$$ Doesnt exist. So:
$$\log(1 - e^{-2ix}) = -\sum_{r=1}^{\infty} \frac{\cos(2rx)}{r}$$
And:
$$1 - e^{-2ix} = 2\sin^2(x)$$
So:
$$\log(\sin^2(x)) - \log(2) = -\sum_{r=1}^{\infty}...$$
That isnt correct though @lab
– Lebes Feb 22 '15 at 11:22