$$\log(\sin x)=-\log 2-\sum_{k\geq 1}\frac{\cos(2kx)}{k} \phantom{a} (0<x<\pi)$$
Consider:
$$\sum_{k\geq 1}\frac{\cos(2kx)}{k} = -\log(\sin(x)) - \log(2)$$
And lets focus on the RHS first.
Using Abel-Plana Formula
$$\sum_{n=0}^{\infty} \frac{\cos(2nx)}{n} = \int_{0}^{\infty}\frac{\cos(2kx)}{k} dk + \frac{1}{2} f(0) + i\int_{0}^{\infty} \frac{f(it) - f(-it)}{e^{2\pi t} - 1} dt $$
But that doesnt converge?
$$\sum_{n=1}^{\infty} (-1)^{n-1}x^{n-1} = \frac{1}{1+x}$$ Then:
$$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{x^n}{n} = \log(1+x)$$
Then what should I do?
(1) Moreover why $\log(1+x)$ instead of $\log(X)$? Thanks
– Lebes Feb 22 '15 at 09:16What should I do?
– Lebes Feb 22 '15 at 09:29