1

Give a convincing argument that the following inequalities are true: $$\int_1^n \log x\mathrm dx \leq \log1 + \log2 + ... \log n \leq \int_1^{n+1}\log x \mathrm dx$$ for any $n \geq 1 $ . We are given the hint to observe that: $$\int_{k-1}^k \log x\mathrm dx \leq \log k \leq \int_k^{k+1}\log x\mathrm dx $$

Update 1

BRIC-Fan's argument makes sense but I'm supposed to use the result of the above inequality to show that: $$ n^ne^{1-n} \leq n! \leq (n+1)^{n+1}e^{-n} $$

My apologies if this is trivial but could someone please help bridge the gap?

2 Answers2

3

hint: $\displaystyle \sum_{k=1}^n \int_{k-1}^k \log xdx \leq \displaystyle \sum_{k=1}^n \log k \leq \displaystyle \sum_{k=1}^n \int_{k}^{k+1} \log xdx$

DeepSea
  • 77,651
3

One of the ways to apply this hint is notice that $n! = e^{\log n!} = e^{\sum_{k=1}^{n} \log k} <e^{\int_{1}^{n+1} \log x dx} = e^{(n+1) \log (n+1) -n} = e^{\log (n+1)^{n+1}} \cdot e^{-n}$

Alex
  • 19,262