-1

Evaluate $$\sum\limits_{k=1}^{n} \frac{k}{2^k}$$

Thomas Andrews
  • 177,126
sasza90
  • 19

3 Answers3

2

HINT: Let $$S = \sum_{k = 1}^{n}(\frac{k}{2^k})$$

Try evaluating $S - \frac{S}{2}$ and you will see the trend.

1

You have that:

$$\displaystyle\sum_{k=0}^n r^k=\displaystyle\frac{1-r^{n+1}}{1-r}$$

derive the both side to get an expression to this sum, observe that your first term is $1$ not zero. Take $r=\displaystyle\frac{1}{2}$.

EQJ
  • 4,369
1

$$\sum\limits_{k=1}^{n} \frac{k}{2^k} = \frac{1}{2} \sum_{k=1}^{n} \frac{k}{2^{k-1}} = \frac{1}{2} \left(\sum_{k=1}^{n} \frac{k - 1}{2^{k-1}} + \sum_{k=1}^{n} \frac{1}{2^{k-1}}\right) = ....$$

Good?

sasza90
  • 19