Other solution:
The cases $n=1,2$ are trivial. In the following, I consider $n\geq 3$.
Lemma: Given positive numbers $y_1$, $y_2$,..., $y_n$ and $d$ with $y_1+\cdots +y_n=1$, we have
$$\left(\frac{1}{y_1+d}-1\right)\left(\frac{1}{y_2+d}-1\right)\cdots\left(\frac{1}{y_n+d}-1\right)\geq\left(\frac{1}{\frac{1}{n}+d}-1\right)^n\tag{1}$$
Proof: Let $d>0$ and $U=\{y=(y_1,y_2,...,y_n)\in\mathbb{R}^n;\;y_1>0,\;y_2>0,\dots, \;y_n>0\}$.
Define $f,\varphi:U\to\mathbb{R}$ by $f(y)=\left(\frac{1}{y_1+d}-1\right)\cdots\left(\frac{1}{y_n+d}-1\right)$ and $\varphi(y)=y_1+\cdots+y_n$.
It follows from the Lagrange Multipliers Method that:
$$y\in \varphi^{-1}(1)\text{ is a critical point of } f\quad\Longleftrightarrow\quad\nabla f(y)=\lambda \nabla \varphi(y) \text{ for some } \lambda\in\mathbb{R}$$
$$\Longleftrightarrow \qquad\frac{1}{Y_i^2}\left(\frac{1}{Y_j}-1\right)
=\frac{1}{Y_j^2}\left(\frac{1}{Y_i}-1\right),\quad\forall\ i,j=1,...,n$$
$$\Longleftrightarrow \qquad y_1=y_2=\cdots=y_n=\frac{1}{n}\quad \text{(here we use $n\geq 3$)}$$
So, $q=(\frac{1}{n},\frac{1}{n},\dots,\frac{1}{n})$ is the unique critical point of $f$ in $\varphi^{-1}(1)$. It is possible to prove that $f$ attains minimum at $q$ (the argument is similar to this one).
Therefore, for all $x\in\varphi^{-1}(1)$ we have
$$f(y)\geq f\left(\tfrac{1}{n},\tfrac{1}{n},\dots,\tfrac{1}{n}\right)\tag{2}$$
As $(\text{2})$ is $(1)$, the proof is complete.
Corollary 1: Given positive numbers $y_1$, $y_2$,..., $y_n$ with $y_1+\cdots +y_n=1$, we have
$$\left(\frac{1}{y_1}-1\right)\left(\frac{1}{y_2}-1\right)\cdots\left(\frac{1}{y_n}-1\right)\geq\left(n-1\right)^n\tag{3}$$
Proof: Letting $d\to 0$ in $(1)$ we get $(3)$.
Corollary 2: Let $x_1,x_2,...,x_n>0$ with $\displaystyle\frac{1}{1+x_1}+\frac{1}{1+x_2}\cdots +\frac{1}{1+x_n}=1$. Then
$$\sqrt[n]{x_1x_2\cdots x_n}\geq n-1$$
Proof: Apply Corollary 1 with
$$y_1=\frac{1}{1+x_1},\quad y_2=\frac{1}{1+x_2},\quad\dots\quad y_n=\frac{1}{1+x_n}$$