There is a general technique for describing line bundles in topology, differential geometry, complex manifolds,...
We can apply it in algebraic geometry to projective space and it will give you an alternative approach which you might find appealing. Here it is.
(1)
Consider the covering $\mathcal U$ of $\mathbb P^n_k$ consisting of the open subsets $U_i=\lbrace z=[z_0:...:z_n]\in\mathbb P^n_k| z_i\neq 0\rbrace \; (i=0,...,n)$ and the functions $g_{ij}\in \Gamma(U_i\cap U_j,\mathcal O^*_{\mathbb P^n_k})$ defined by $g_{ij}(z)=\frac{z_j}{z_i}$.
These functions ("a cocycle relative to $\mathcal U$") completely characterize the sheaf $\mathcal O_{\mathbb P^n_k}(1)$ : given an arbitrary open subset $U\subset \mathbb P^n_k$, a section $s\in \Gamma(U,\mathcal O_{\mathbb P^n_k}(1))$
corresponds to a family of functions $s_i\in \Gamma(U\cap U_i,\mathcal O_{\mathbb P^n_k})$ satisfying $s_i=g_{ij}s_j$ on $U\cap U_i\cap U_j$.
Important example (1) A global section $s\in \Gamma(\mathbb P^n_k,\mathcal O_{\mathbb P^n_k}(1))$ is given by functions $s_i\in \Gamma(U_i,\mathcal O_{\mathbb P^n_k})$ satisfying $s_i=\frac{z_j}{z_i}s_j$ on $U_i\cap U_j$.
The only possible functions are of the form
$s_i=\frac{L}{z_i}$ where $L=a_0z_0+...+a_nz_n \in (k^{n+1})^*$ is an arbitrary linear form on $k^{n+1}$ and we have thus
$$\Gamma(\mathbb P^n_k,\mathcal O_{\mathbb P^n_k}(1))=(k^{n+1})^*$$
(-1)
Similarly, the functions $g_{ij}^{-1}(z)=\frac{z_i}{z_j}$ characterize the sheaf $\mathcal O_{\mathbb P^n_k}(-1)$
Important example (-1) A global section $t\in \Gamma(\mathbb P^n_k,\mathcal O_{\mathbb P^n_k}(-1))$ is given by functions $t_i\in \Gamma(U_i,\mathcal O_{\mathbb P^n_k})$ satisfying $t_i=\frac{z_i}{z_j}t_j$ on $U_i\cap U_j$.
Only $t_i=0$ is possible and we have thus
$$ \Gamma(\mathbb P^n_k,\mathcal O_{\mathbb P^n_k}(-1))=0 $$
An explicit calculation for n=1 (skip if you are fed up with computing!)
In order to really understand what's going on without losing ourselves in indices , let's examine the case $n=1$ and compute $\Gamma(\mathbb P^1_k,\mathcal O(1))$.
A section $s\in \Gamma(\mathbb P^1_k,\mathcal O(1))$ is given by a function $s_0(z)=a+bz+cz^2+...\in \Gamma(U_0,\mathcal O)=k[z]\; (z=z_1/z_0)$
and a function
$s_1(w)=\alpha +\beta w+\gamma w^2+...\in \Gamma(U_1,\mathcal O) \; (w=z_0/z_1)$
satisfying (note that $w=1/z$ on $U_0\cap U_1$)
$s_0(z)=a+bz+cz^2+...=z(\alpha +\beta w+\gamma w^2+...)=\alpha z+\beta+\gamma (1/z)+...$ on $U_0\cap U_1$.
This implies that $a=\beta, b=\alpha$ and that all other coefficients are zero.
Thus, putting $L=az_0+bz_1$, we have indeed proved that $s_0=\frac{L}{z_0}, s_1=\frac{L}{z_1}$ as announced above.