Two random variables X, Y are independent and both uniform-distributed in[0, 1].
How to calculate the probability density function Z=X+Y ?
I tried below,
$$f_X(x) = \begin{cases} \frac1{1-0} \\ 0 \end{cases} = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & otherwise \end{cases} $$
Similarly, $$ f_Y(y) = \begin{cases} 1, & 0 \le y \le 1 \\ 0, & otherwise \end{cases} $$
As $f(x,y)= f_X(x)f_Y(y)$, and
$$ f(z) = \int_{-\infty}^{+\infty} f(x, y)\, dx = \int_0^1 f(x, z-x)\, dx = ? $$
but have no idea how to continue to finish above evaluation.