After the demonstration of the inequality of Cauchy-Schwarz make by my professor, I still don't understand some steps of the demonstration.
To prove this inequality, my professor use the induction princile.
First, verify $P(1)$. \begin{align} \big(\sum^1{a_kb_k}\big)^2 &\le \big(\sum^1{a_k^2}\big)\big(\sum^1{b_k^2}\big) \\ \big(a_1b_1\big)^2 &= a_1^2b_1^2 \end{align}
We can also verify $P(2)$. \begin{align} \big(\sum^2{a_kb_k}\big)^2 &\le \big(\sum^2{a_k^2}\big)\big(\sum^2{b_k^2}\big) \\ \big(a_1b_1+a_2b_2\big)^2 &\le \big(a_1^2+a_2^2\big)\big(b_1^2+b_2^2\big) \\ a_1^2b_1^2+2a_1b_1a_2b_2+a_2^2b_2^2 &\le a_1^2b_1^2+a_1^2b_2^2+a_2^2b_1^2+a_2^2b_2^2 \\ 2a_1b_1a_2b_2 &\le a_1^2b_2^2+a_2^2b_1^2 \\ 0 &\le a_1^2b_2^2+a_2^2b_1^2 -2a_1b_1a_2b_2 \\ 0 &\le \big(a_1b_1-a_2b_2\big)^2 \end{align}
If we suppose $P(n)$ to be true, we can verify $P(n+1)$. \begin{align} \big(\sum^{n+1}{a_kb_k}\big)^2 &\le \big(\sum^{n+1}{a_k^2}\big)\big(\sum^{n+1}{b_k^2}\big) \\ \end{align}
By the inequality of the triangle, we can write the follow statement. $$\left|\sum^{n+1}{a_kb_k}\right| \le \left|\sum^{n}{a_kb_k}\right|+\left|a_{n+1}\right|\left|b_{n+1}\right|$$ So, we can assume, $$\left|\sum^{n+1}{a_kb_k}\right| \le \sqrt{\sum{a_k^2}}\sqrt{\sum{b_k^2}}+\left|a_{n+1}\right|\left|b_{n+1}\right|$$ because we know, $$\left|\sum{a_kb_k}\right| \le \sqrt{\sum{a_k^2}}\sqrt{\sum{b_k^2}}$$ If we define $A_1=\sqrt{\sum{a_k^2}}$, $B_2=\sqrt{\sum{b_k^2}}$, $A_2=\left|a_{n+1}\right|$ and $B_2=\left|b_{n+1}\right|$ we can write this inequation like this : $$\left|\sum^{n+1}{a_kb_k}\right| \le A_1B_1+A_2B_2$$ And than, there, it's where I don't understand... $$\left|\sum^{n+1}{a_kb_k}\right| \le \sqrt{A_1^2+A_2^2}\sqrt{B_1^2+B_2^2}$$
And why we have to verify $P(2)$.