1

Given a Hilbert space $\mathcal{H}$.

Consider spectral measures: $$E^{(\prime)}:\mathcal{B}(\mathbb{C})\to\mathcal{B}(\mathcal{H})$$

Denote their operators by: $$M^{(\prime)}:=\int\lambda\mathrm{d}E^{(\prime)}(\lambda)$$ Then one has: $$M=M'\iff E=E'$$

How can I prove this?

C-star-W-star
  • 16,275

1 Answers1

0

I finally found a proof. :D

Consider the projections: $$N_\Re:=\frac{1}{2}\{N+N^*\}=\frac{1}{2}\{N'+N'^*\}=:N'_\Re$$ $$N_\Im:=\frac{1}{2i}\{N-N^*\}=\frac{1}{2i}\{N'-N'^*\}=:N'_\Im$$

Their resolvents agree: $$R_\alpha(z)=(z-N_\alpha)^{-1}=(z-N'_\alpha)^{-1}=R'_\alpha(z)$$

By Stone's formula: $$E_\alpha(-\infty,\lambda_\alpha]\varphi=\lim_{\delta\to0^+}\lim_{\varepsilon\to0^+}\int_{-\infty}^{\lambda_\alpha+\delta}\Delta R_\alpha(s\pm i\varepsilon)\varphi\mathrm{d}s\\ =\lim_{\delta\to0^+}\lim_{\varepsilon\to0^+}\int_{-\infty}^{\lambda_\alpha+\delta}\Delta R'_\alpha(s\pm i\varepsilon)\varphi\mathrm{d}s=E'_\alpha(-\infty,\lambda_\alpha]\varphi$$

By construction one has: $$E^{(\prime)}_\Re(A)=E^{(\prime)}(A\times\mathbb{R})\quad E^{(\prime)}_\Im(B)=E^{(\prime)}(\mathbb{R}\times B)$$

Therefore one obtains: $$E(-\infty,\lambda]=E\bigg((-\infty,\lambda_\Re]\times\mathbb{R}\bigg)E\bigg(\mathbb{R}\times(-\infty,\lambda_\Im]\bigg)\\ =E'\bigg((-\infty,\lambda_\Re]\times\mathbb{R}\bigg)E'\bigg(\mathbb{R}\times(-\infty,\lambda_\Im]\bigg)=E'(-\infty,\lambda]$$

Concluding the assertion.

C-star-W-star
  • 16,275