Given the complex plane $\mathbb{C}$.
Consider a complex measure: $$\mu:\mathcal{B}(\mathbb{C})\to\mathbb{C}:\quad\operatorname{supp}\mu\subseteq\overline{B_r}$$
Then one has: $$\int\lambda^k\,\mathrm{d}\mu(\lambda)=0\quad(k\in\mathbb{N}_0)\implies\mu=0$$
How can I prove this?