Show that $$\frac{(2\sin(2^\circ)) + (4\sin(4^\circ))+ (6\sin(6^\circ)) + \ldots +(180\sin(180^\circ))}{90} = \cot(1^\circ).$$
I used a lot of steps, and typing it all down on here would take me an hour, but here are my last few steps up to the point where I got stuck:
$$180 (\sin(2^\circ) + \sin(4^\circ) + \sin(6^\circ) +.....+ \sin(88^\circ)) + 90$$
Using the product-to-sum formulas, I then reduced it down to
$$180(2\sin(45^\circ) [\cos(43^\circ)+\cos(41^\circ)+\cos(39^\circ)+.....\cos(3^\circ)+\cos(1^\circ)] + 90$$
Simplifying a bit more gives me:
$$\frac{180\sqrt{2} [\cos(43^\circ)+\cos(41^\circ)+\cos(39^\circ)+.....\cos(3^\circ)+\cos(1^\circ)] + 90}{90}$$ $$= 2\sqrt{2} [\cos(43^\circ)+\cos(41^\circ)+\cos(39^\circ)+.....\cos(3^\circ)+\cos(1^\circ)] + 90.$$
Now I am stuck. What can I do next to achieve the final result?