The trick is to multiply the whole sum by $2\sin 1^\circ$. Since:
$$ 2\sin 1^\circ \cos 1^{\circ} = \sin 2^\circ - \sin 0^\circ,$$
$$ 2\sin 1^\circ \cos 3^{\circ} = \sin 4^\circ - \sin 2^\circ,$$
$$\ldots $$
$$ 2\sin 1^\circ \cos 43^{\circ} = \sin 44^\circ - \sin 42^\circ,$$
by adding these identites we get that the original sum $S$, multiplied by $2\sin 1^\circ$, equals $\sin 44^\circ$.
This just gives $S=\color{red}{\frac{\sin 44^\circ}{2\sin 1^{\circ}}}.$
Footnote. Such sum must be greater than $\frac{44\sqrt{2}}{\pi}$, but not greater than $\frac{44\sqrt{2}}{\pi}+\frac{\pi}{22\sqrt{2}}$, by a Riemann sum $+$ concavity argument.