Hint 1: To calculate $\sum_{k=0}^n (-1)^k \binom{n}{k}^2$, by using the identity $(1-x^2)^n=(1-x)^n(1+x)^n$, show that for each non-negative integer $m\le n$,
$$\sum_{k=0}^{2m} (-1)^k \binom{n}{k} \binom{n}{2m-k}=(-1)^m \binom{n}{m},$$
and
$$\sum_{k=0}^{2m+1} (-1)^k \binom{n}{k} \binom{n}{2m+1-k}=0.$$
Then consider the two different cases when $n$ is even and when $n$ is odd.
Hint 2: To calculate $\sum_{k=0}^n k \binom{n}{k}^2$, consider a class of $n$ boys and $n$ girls then try to select $n$ guys with a boy as their leader.
Another way to calculate these summations is to use the generating functions.
$A(z)=(1+z)^n$ is the generating function for $a_m=\binom{n}{m}$, and $B(z)=zA'(z)=nz(1+z)^{n-1}$ is the generating function for $b_m=ma_m=m\binom{n}{m}$. Therefore $C(z)=B(z)A(z)=nz(1+z)^{2n-1}$ is the generating function for the convolution $c_m=\sum_{k=0}^m{b_k a_{m-k}}=\sum_{k=0}^m{k\binom{n}{k}\binom{n}{m-k}}$, but
$$\begin{align}
C(z) & = nz(1+z)^{2n-1} \\
& = nz\sum_{m=0}^{2n-1}{\binom{2n-1}{m} z^m} \\
& = \sum_{m=1}^{2n}{n\binom{2n-1}{m-1} z^m}. \\
\end{align}$$
Thus
$$\sum_{k=0}^m{k\binom{n}{k}\binom{n}{m-k}}=c_m=n\binom{2n-1}{m-1},$$
now if m=n then
$$n\binom{2n-1}{n-1}=\sum_{k=0}^n{k\binom{n}{k}\binom{n}{n-k}}=\sum_{k=0}^n{k\binom{n}{k}^2}.$$
Also if you can calculate $\sum_{i=0}^k \binom{n}{i}\binom{m}{k-i}$, then you know that
$$\sum_{i=0}^k \binom{n}{i}\binom{m}{k-i}=\binom{n+m}{k}.$$
Now if we use the identity $k\binom{n}{k}=n\binom{n-1}{k-1}$, then we have
$$\begin{align}
\sum_{k=0}^n k \binom{n}{k}^2 & =\sum_{k=0}^n k \binom{n}{k} \binom{n}{k} \\
& = n \sum_{k=0}^n \binom{n-1}{k-1} \binom{n}{k} \\
& = n \sum_{k=0}^n \binom{n-1}{n-k} \binom{n}{k} \\
& = n \binom{(n-1)+n}{n} \\
& = n \binom{2n-1}{n-1}.
\end{align}$$