I don't know much about probabilities and its well-known formulas so let me try it from scratch.
Assume $Z\sim N(\mu,\sigma^2)$ and let us compute $E\left[e^{Z^2}\right]$.
$$\begin{align}E\left[e^{Z^2}\right]&=\frac{1}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{\infty}e^{x^2}e^{-\frac{\left(x-\mu\right)}{2\sigma^2}}dx\\&=\frac{1}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{\infty}e^{-\frac{\left(x-\frac{\mu}{1-2\sigma^2}\right)^2-\frac{2\sigma^2}{(1-2\sigma^2)}}{2\sigma^2/(1-2\sigma^2)}}dx\\&=\frac{e^{\frac{\mu^2}{1-2\sigma^2}}}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{\infty}e^{-\frac{y^2}{2\sigma^2/(1-2\sigma^2)}}dy\\&=\frac{e^{\frac{\mu^2}{1-2\sigma^2}}}{\sqrt{1-2\sigma^2}}\frac{1}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{\infty}e^{-s^2/2\sigma^2}\\&=\frac{e^{\frac{\mu^2}{1-2\sigma^2}}}{\sqrt{1-2\sigma^2}}\end{align}$$
Summarizing
$$\begin{equation}Z\sim N(\mu,\sigma^2)\implies E\left[e^{Z^2}\right]=\frac{e^{\frac{\mu^2}{1-2\sigma^2}}}{\sqrt{1-2\sigma^2}}\end{equation}\ \ \ \ \ \ \ (1)$$
We try now to compute $E\left[Z_t|F_s\right]$. Let's see
$$\begin{align}E\left[Z_t|F_s\right]&=E\left[\frac{e^{W_t^2/(1+2t)}}{\sqrt{1+2t}}| F_s\right]\\&=\frac{1}{\sqrt{1+2t}}E\left[e^{\left(W_t-W_s+W_s\right)^2/(1+2t)}| F_s\right]\\&=\frac{e^{W_s^2/(1+2t)}}{\sqrt{1+2t}}E\left[e^{(W_t-W_s)^2/(1+2t)}e^{2(W_t-W_s)W_s/(1+2t)}|F_s\right]\end{align}$$
To shorten notation let me put $Z:=(W_t-W_s)/\sqrt{1+2t}$ and $X_s:=W_s/\sqrt{1+2t}$. With this notation we continue the computation of the conditional expectation above.
$$\begin{align}E\left[E^{Z^2}E^{2ZX}|F_s\right]&=E\left[\sum_{k=0}^{\infty}\frac{2^kX_2^kZ^k}{k!}e^{Z^2}|F_s\right]\\&=\sum_{k=0}^{\infty}E\left[X_s^k\frac{2^kZ^k}{k!}e^{Z^2}|F_s\right]\\&=\sum_{k=0}^{\infty}X_s^k(\omega')E\left[\frac{2^kZ^k(\omega)}{k!}e^{Z^2}|F_s\right]\\&=\sum_{k=0}^{\infty}X_s^k(\omega')E_\omega\left[\frac{2^kZ^k(\omega)}{k!}e^{Z^2}\right]\\&=\sum_{k=0}^{\infty}E_\omega\left[\frac{2^kX_s^k(\omega')Z^k(\omega)}{k!}e^{Z^2}\right]\\&=E_\omega\left[e^{Z^2(\omega)}e^{2X_s(\omega')Z(\omega)}\right]\end{align}$$
(I wrote explicitly in the few last lines the state variables and a subscript on the expectation to indicate with respect to which this is computed).
Putting this in the previous computation we get
$$E\left[Z_t|F_s\right]=\frac{1}{\sqrt{1+2t}}E_\omega\left[e^{(Z+X_s(\omega'))^2}\right]$$
Now we apply the formula (1) to $Z+X_s(\omega')\sim N\left(\frac{W_s(\omega')}{\sqrt{1+2t}},\frac{t-s}{1+2t}\right)$ to finally get
$$E\left[Z_t|F_s\right]=\frac{1}{\sqrt{1+2t}}e^{W_s^2/(1+2s)}\frac{\sqrt{1+2t}}{\sqrt{1+2s}}=Z_s.$$