While attempting to evaluate the integral $\int_{0}^{\frac{\pi}{2}}\sinh^{-1}{\left(\sqrt{\sin{x}}\right)}\,\mathrm{d}x$, I stumbled upon the following representation for a related integral in terms of hypergeometric functions:
$$\small{\int_{0}^{1}\frac{x\sinh^{-1}{x}}{\sqrt{1-x^4}}\,\mathrm{d}x\stackrel{?}{=}\frac{\Gamma{\left(\frac34\right)}^2}{\sqrt{2\pi}}\,{_4F_3}{\left(\frac14,\frac14,\frac34,\frac34;\frac12,\frac54,\frac54;1\right)}-\frac{\Gamma{\left(\frac14\right)}^2}{72\sqrt{2\pi}}{_4F_3}{\left(\frac34,\frac34,\frac54,\frac54;\frac32,\frac74,\frac74;1\right)}}.$$
I'm having some trouble wading through the algebraic muckity-muck, so I'd like help confirming the above conjectured identity. More importantly, can these hypergeometrics be simplified in any significant way? The "niceness" of the parameters really makes me suspect it can be...
Any thoughts or suggestions would be appreciated. Cheers!