If a simple way exists, I am looking to show that
$$\boxed{K=\int_0^1 \frac{\ln(x)+\ln(\sqrt x+\sqrt {1+x})}{\sqrt {1-x^2}} dx=0}$$
say, with symmetry, a clever change of variables, or integrations by parts, without evaluating integrals separately. It is similar to @Zacky question, of proving $$\boxed{\int_0^\frac{\pi}{2}\left(\frac{\pi}{3}-x\right)\frac{\ln(1-\sin x)}{\sin x}dx=0}$$ without calculating separately integrals.
If we take separately $$I=\int_0^1 \frac{\ln(x)}{\sqrt {1-x^2}}dx,\>\>\>\>J=\int_0^1 \frac{\ln(\sqrt x+\sqrt {1+x})}{\sqrt {1-x^2}}dx$$the integrals $I$ and $J$ define the same series to a sign (two series of opposite sums) $$ I=-\sum_{n=0}^{\infty}\frac{{2n \choose n}}{4^{n}(2n+1)^{2}},\>\>\>\>\>J=\sum_{n=0}^{\infty}\frac{{2n \choose n}}{4^{n}(2n+1)^{2}}$$
Explanation By Fourier series $\ln\left(\sqrt{1+\sin x}+\sqrt{\sin x}\right)=\sum_{k=0}^\infty\frac{(2k)!}{4^k(2k+1)(k!)^2}\sin((2k+1)x)$ then $J=\int_0^{\frac{\pi}{2}} \ln\left(\sqrt{\sin t}+\sqrt{1+\sin t}\right)dt=\sum_{n=0}^{\infty}\frac{{2n \choose n}}{4^{n}(2n+1)^{2}}$ $ I=\int_{0}^{1}\frac{\log(t)}{\sqrt{1-t^{2}}}dt$ We know that $\frac{1}{\sqrt{1-t^{2}}}=\sum_{n=0}^{\infty}\frac{{2n \choose n}}{4^{n}}t^{2n} $ and $ \int_{0}^{1}\log(t)t^{2n}dt=-\frac{1}{(2n+1)^{2}}$ then $I=-\sum_{n=0}^{\infty}\frac{{2n \choose n}}{4^{n}(2n+1)^{2}} $
We can write K as $$K=\int_0^{\dfrac{\pi}{2}} \Big(\ln(\sin t )+\ln\left(\sqrt{\sin t}+\sqrt{1+\sin t}\right)\Big)dt=0 $$
Remark : Wolframalpha can calculate K, but do not know how to calculate $$\int_0^1 \frac{\ln(\sqrt x+\sqrt {1+x})}{\sqrt {1-x^2}} dx$$ I believe that Wolframe uses a simple way to see that $K$ is zero . same observation for the Zacky’s integral