Consider the integral:
$$\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx$$
Image taken and modified from: Complex Analysis Solution (Please Read for background information).
$R$ is the big radius, $\delta$ is the small radius.
We consider $\displaystyle f(z) = \frac{\log^2(z)}{z^2 + 1}$ where $z = x+ iy$
How can we prove:
$$\oint_{\Gamma} f(z) dz \to 0 \space \text{when} \space R \to \infty$$
We use the parameter (For the big circle $\Gamma$):
$$z = Re^{i\theta}$$
$$\oint_{\Gamma} f(z) dz = \int_{0}^{\pi} \frac{\left( \log(R) + \log(e^{i\theta}) \right)^2\cdot iRe^{i\theta})}{(R^2)(e^{i\theta})^2 + 1} d\theta$$
$$\left| \int_{0}^{\pi} \frac{\left( \log(R) + \log(e^{i\theta}) \right)^2\cdot iRe^{i\theta})}{(R^2)(e^{i\theta})^2 + 1} d\theta \right| < \int_{0}^{\pi} \left| \frac{\left( \log(R) + \log(e^{i\theta}) \right)^2\cdot iRe^{i\theta})}{(R^2)(e^{i\theta})^2 + 1} \right| d\theta$$
We need to try to find:
$$\left| \frac{\left( \log(R) + \log(e^{i\theta}) \right)^2\cdot iRe^{i\theta})}{(Re^{i\theta})^2 + 1} \right|$$
To make the job easier, we can decompose:
$$\left| \frac{\left( \log(R) + \log(e^{i\theta}) \right)^2\cdot iRe^{i\theta})}{(Re^{i\theta})^2 + 1} \right| = \frac{\left|\left( \log(R) + \log(e^{i\theta}) \right)\right| \left| \left( \log(R) + \log(e^{i\theta}) \right) \right| \cdot |iRe^{i\theta}|}{\left| (Re^{i\theta})^2 + 1 \right|} $$
We know: $|iRe^{i\theta}| = R$
$$\frac{\left|\left( \log(R) + \log(e^{i\theta}) \right)\right| \left| \left( \log(R) + \log(e^{i\theta}) \right) \right| \cdot |iRe^{i\theta}|}{\left| (Re^{i\theta})^2 + 1 \right|} < \frac{R}{\left | (Re^{i\theta})^2 + 1 \right |} $$
But how can we find:
$$\left | (Re^{i\theta})^2 + 1 \right |$$
$$\lim_{R \to \infty} \frac{R}{(Re^{i\theta})^2 + 1} = 0$$
Since $R < R^2$ of the denominator.
But I still cant justify:
$$\frac{\left|\left( \log(R) + \log(e^{i\theta}) \right)\right| \left| \left( \log(R) + \log(e^{i\theta}) \right) \right| \cdot |iRe^{i\theta}|}{\left| (Re^{i\theta})^2 + 1 \right|} < \frac{R}{\left | (Re^{i\theta})^2 + 1 \right |} $$
I just need to prove somehow:
$$\left| \left( \log(R) + \log(e^{i\theta}) \right) \right | < 1$$
Can someone give me a hand?