Start with
$$dS=\left(\frac{\partial S}{\partial T}\right)_VdT+\left(\frac{\partial S}{\partial V}\right)_TdV$$
Using the notes shown here
Method 1:
i) Divide both sides by dV $$\frac{dS}{dV}=\left(\frac{\partial S}{\partial T}\right)_V\frac{dT}{dV}+\left(\frac{\partial S}{\partial V}\right)_T\frac{dV}{dV}$$
ii) and at const. P
$$\left(\frac{dS}{dV}\right)_P=\left(\frac{\partial S}{\partial T}\right)_V\left(\frac{dT}{dV}\right)_P+\left(\frac{\partial S}{\partial V}\right)_T\left(\frac{dV}{dV}\right)_P$$
$$\left(\frac{dS}{dV}\right)_P=\left(\frac{\partial S}{\partial T}\right)_V\left(\frac{dT}{dV}\right)_P+\left(\frac{\partial S}{\partial V}\right)_T$$
Question 1: but how does
$$\left(\frac{dS}{dV}\right)_P=\left(\frac{\partial S}{\partial T}\right)_V\left(\frac{dT}{dV}\right)_P+\left(\frac{\partial S}{\partial V}\right)_T$$
becomes
$$\left(\frac{\partial S}{\partial V}\right)_P=\left(\frac{\partial S}{\partial T}\right)_V\left(\frac{\partial T}{\partial V}\right)_P+\left(\frac{\partial S}{\partial V}\right)_T???$$
Using the notes shown here
Method 2:
Differentiate both side wrt V, holding P const. and use product rule
$$\frac{\partial}{\partial V}\left(dS\right)_P=\frac{\partial}{\partial V}\left(\left(\frac{\partial S}{\partial T}\right)_VdT\right)_P+\frac{\partial}{\partial V}\left(\left(\frac{\partial S}{\partial V}\right)_TdV\right)_P$$
$$\left(\frac{\partial dS}{\partial V}\right)_P=\left(\left(\frac{\partial^2 S}{\partial V \partial T}\right)_V\right)_PdT+\left(\frac{\partial S}{\partial T}\right)_V\left(\frac{\partial dT}{\partial V}\right)_P+\left(\left(\frac{\partial^2 S}{\partial V^2}\right)_T\right)_PdV+\left(\frac{\partial S}{\partial V}\right)_T\left(\frac{\partial dV}{\partial V}\right)_P$$
Question 2: I got so many extra terms, and how to deal with these $$\left(\frac{\partial \text{ d blah}_1}{\partial \text{ blah}_2}\right)_{\text{blah}_3}$$ terms?
Tl:dr
How to partial differentiate a total differential rigorously?