$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\,{\rm I}\pars{n}\equiv\int_{0}^{\pi}{\sin^{2}\pars{nx} \over \sin^{2}\pars{x}}\,\dd x = \verts{n}\pi:\ {\large ?}\,,\qquad
n \in {\mathbb Z}}$.
\begin{align}
&\bbox[10px,#ffe]{\ds{\int_{0}^{\pi}{\sin^{2}\pars{nx} \over \sin^{2}\pars{x}}\,\dd x}}
=\int_{0}^{\pi}{1 - \cos\pars{2nx} \over 1 - \cos\pars{2x}}\,\dd x
=\half\int_{0}^{2\pi}{1 - \cos\pars{nx} \over 1 - \cos\pars{x}}\,\dd x
\\[5mm]&=\half\,\Re\int_{0}^{2\pi}
{1 + \ic\verts{n} x- \expo{\ic\verts{n}x} \over 1 - \cos\pars{x}}\,\dd x
=\half\,\Re\oint_{\verts{z}\ =\ 1}
{1 + \verts{n}\ln\pars{z} - z^{\verts{n}} \over 1 - \pars{z^{2} + 1}/\pars{2z}}
\,{\dd z \over \ic z}
\\[5mm]&=-\,\Im
\oint_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ \,{\rm Arg}\pars{z}\ <\ \pi}}
{1 + \verts{n}\ln\pars{z} - z^{\verts{n}} \over \pars{1 - z}^{2}}\,\dd z
\\[5mm]&=\Im\braces{\!\!%
\int_{-1}^{0}\!{1 + \verts{n}\bracks{\ln\pars{-x} + \ic\pi} - x^{\verts{n}}
\over \pars{x - 1}^{2}}\,\dd x
+\int_{0}^{-1}\!{1 + \verts{n}\bracks{\ln\pars{-x} - \ic\pi} - x^{\verts{n}}
\over \pars{x - 1}^{2}}\,\dd x\!\!}
\\[5mm]&=\Im\bracks{2\verts{n}\pi\ic\int_{-1}^{0}{\dd x \over \pars{x - 1}^{2}}}
=2\verts{n}\pi\bracks{-\,{1 \over x - 1}}_{-1}^{0}
=2\verts{n}\pi\pars{1 - \half} =\
\bbox[10px,#ffe,border:1px solid #000]{\ds{\verts{n}\pi}}
\end{align}