Let, $$\text{I(n)}=\displaystyle \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 nx}{\sin^2 x} \text{d}x$$
and
$\text{J}= \text{I(n) - I(n-1)}=\displaystyle \int_{0}^{\frac{\pi}{2}} \frac{\sin^2nx-\sin^2(n-1)x}{\sin^2 x} \text{d}x$
$=\displaystyle \int_{0}^{\frac{\pi}{2}} \frac{\sin(2n-1)x\times\sin x}{\sin^2 x} \text{d}x$
[Using $(\sin^2a - \sin^2b) = \sin(a+b)\times \sin(a-b)$]
$=\displaystyle \int_{0}^{\frac{\pi}{2}} \frac{\sin(2n-1)x}{\sin x} \text{d}x$
Now, consider
$$ \text{S}=\cos (2x) + \cos(4x) + \cos(6x) +......+ \cos(2n-2)x = \frac {\sin(n-1)x \times \cos nx}{\sin x}$$
$=\dfrac {2\sin(n-1)x \times \cos nx}{2\sin x}$
$=\dfrac {\sin(2n-1)x - \sin x}{2\sin x}$
$\implies \text{J}=\displaystyle \int_{0}^{\frac{\pi}{2}}(2\text{S}+1) \: \text{d}x$
$=\dfrac{\pi}{2}$
$\implies \text{I(1), I(2), I(3) ..... I(n)}$ form an Arithmetic Progression
Since $\text{I(1)}=\dfrac{\pi}{2}$ , $\text{I(n)}=\boxed{\dfrac{n\pi}{2}}$