Prove that $(1+2+3+\cdots + n)^2 = 1^3+2^3+3^3+\cdots + n^3$ for every $n \in \mathbb{N}$.
Proof. We will use mathematical induction. If $n = 1$, then we have $(1)^2= 1^3 = 1$. We must show that $S_n$ implies $S_{n+1}$. Assume that for $n \in \mathbb{N}$, the statement $(1+2+3+\cdots + n)^2 = 1^3+2^3+3^3+\cdots + n^3$ holds. Then
$\begin{align} &\left[\displaystyle\sum_{n \in \mathbb{N}}^n n\right]^2+(n+1)^3 \\ =& \displaystyle\sum_{n \in \mathbb{N}}^n n^3+(n+1)^3 \\ =& \displaystyle\sum_{n \in \mathbb{N}}^n n^3 + n^3 + 3n^2 +3n + 1 \end{align}$
How do I finish carrying out the induction? I can't seem to manipulate the right hand side properly get the form $\left[\displaystyle\sum_{n \in \mathbb{N}}^n n+1\right]^2$.