We have
$$\dfrac{\sin(x)}x = \prod_{n=1}^{\infty}\left(1-\dfrac{x^2}{n^2 \pi^2}\right)$$
The Taylor series for $$\dfrac{\sin(x)}x = 1-\dfrac{x^2}{3!} + \dfrac{x^4}{5!} \mp$$
Comparing the coefficient of $x^4$, we obtain
$$\sum_{\overset{m,n=1}{m< n}}^{\infty} \dfrac1{m^2n^2\pi^4} = \dfrac1{120}$$
$$\sum_{\overset{m,n=1}{m< n}}^{\infty}\dfrac1{m^2n^2} = \dfrac{\left(\displaystyle\sum_{m=1}^{\infty} \dfrac1{m^2} \right)^2 - \displaystyle\sum_{m=1}^{\infty} \dfrac1{m^4}}2$$
Making use of the fact that
$$\displaystyle\sum_{m=1}^{\infty} \dfrac1{m^2} = \dfrac{\pi^2}{6}$$ we obtain
$$\dfrac{\pi^4}{120} = \dfrac{\dfrac{\pi^4}{36}-\zeta(4)}2$$
Hence,
$$\zeta(4) = \dfrac{\pi^4}{36}-\dfrac{\pi^4}{60} = \dfrac{\pi^4}{12}\left(\dfrac13-\dfrac15\right) = \dfrac{\pi^4}{90}$$