It is easy to show that the complex Fourier Series for $e^{bx}$, $x\in[0,2\pi]$ is given by
$$e^{bx}=\frac{e^{2\pi b}-1}{2\pi}\sum_{n=-\infty}^\infty \frac{e^{inx}}{b-in}$$
whereupon isolating the series becomes
$$\sum_{n=-\infty}^\infty \frac{e^{inx}}{b-in}=\frac{2\pi e^{bx}}{e^{2\pi b}-1} \tag1$$
Differentiating $(1)$ with respect to $b$ and multiplying by $-1$ reveals
$$\begin{align}
\sum_{n=-\infty}^\infty \frac{e^{inx}}{(b-in)^2}&=-\frac{d}{db}\left(\frac{2\pi e^{bx}}{e^{2\pi b}-1} \right)\\\\
&=\left(\frac{2\pi e^{bx}}{(e^{2\pi b}-1)^2}\right)\left(2\pi e^{2\pi b}-(e^{2\pi b}-1)x \right)\tag 2
\end{align}$$
Next, setting $b=1$ in $(2)$ yields
$$\begin{align}
\sum_{n=-\infty}^\infty \frac{e^{inx}}{(1-in)^2}&=\left(\frac{2\pi e^{x}}{(e^{2\pi }-1)^2}\right)\left(2\pi e^{2\pi }-(e^{2\pi }-1)x \right)\tag 3
\end{align}$$
Finally, applying Parseval's Theorem to $(3)$ we find that
$$\begin{align}
\sum_{n=-\infty}^\infty \frac{1}{(n^2+1)^2}&=\left(\frac{2\pi}{(e^{2\pi}-1)^2}\right)^2\,\frac{1}{2\pi}\int_0^{2\pi }e^{2x}(2\pi e^{2\pi}-(e^{2\pi}-1)x)^2\,dx\\\\
&=\frac{\pi}2 \left(\pi \text{csch}^2(\pi)+\text{coth}(\pi)\right)
\end{align}$$
whereupon solving for the series of interest yields
$$\bbox[5px,border:2px solid #C0A000]{\sum_{n=1}^\infty \frac{1}{(n^2+1)^2}=-\frac12 +\frac{\pi}4 \left(\pi \text{csch}^2(\pi)+\text{coth}(\pi)\right)}$$