$$1^3+2^3+\cdots+n^3=\left[\frac{n(n+1)}2\right]^2$$
so far I have..
$$1^3+2^3+\cdots+k^3+(k+1)^3=\left[\frac{(k+1)(k+2)}2\right]^2$$
then..
$$\left[\frac{k(k+1)}2\right]^2+(k+1)^3=\left[\frac{(k+1)(k+2)}2\right]^2$$
where do I go from here so that the rhs equals the lhs?