1

Given $a^3 + b^{3}+ c^{3}= (a+b+c)^{3} $.

Prove that for any natural number $n$, $$a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}$$

I first tried mathematical induction but did not proceed anywhere.
Can the formula $(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)$ be directly used? Can this problem be solved using mathematical induction?

Anamaki
  • 1,002

2 Answers2

1

Solution 1 Using Induction

We have $$(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\implies(a+b)(b+c)(c+a)=0$$

Now, for $k$ we have

$$(a+b+c)^{2k+1}=a^{2k+1}+b^{2k+1}+c^{2k+1}$$ For $(k+1)$ $$(a+b+c)^{2k+3}=(a+b+c)^2(a+b+c)^{2k+1}=(a+b+c)^2(a^{2k+1}+b^{2k+1}+c^{2k+1})$$

$$(a+b+c)^{2k+3}=a^{2k+3}+b^{2k+3}+c^{2k+3}+(a+b)(b+c)(c+a)(\text{some factor})$$

(I've left the job of finding factor to you for observing pattern see here and here)

Using $(a+b)(b+c)(c+a)=0$ $$(a+b+c)^{2k+3}=a^{2k+3}+b^{2k+3}+c^{2k+3}$$

Solution 2

$$(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\implies(a+b)(b+c)(c+a)=0$$ Either of $a+b,b+c,c+a =0$

$\implies (a+b+c)=a$ or $(a+b+c)=b$ or $(a+b+c)=c$

In any case $$(a+b+c)^{2n+1}=a^{2n+1}+b^{2n+1}+c^{2n+1}$$

Aditya Hase
  • 8,851
1

We have $$b^3+c^3=(a+b+c)^3-a^3$$

$$\iff(b+c)(b^2-bc+c^2)=(a+b+c-a)\{(a+b+c)^2+a(a+b+c)+a^2\}$$

$$\iff(b+c)\{3a^2+3ab+3bc+3ca\}=0$$

$$\iff(b+c)(a+b)(a+c)=0$$

As the product of three terms is zero, hence at least one of them must be zero

If $b+c=0, a+b+c=a\implies (a+b+c)^{2n+1}=?$

and using Prove by induction that $a-b|a^n-b^n$,

$b^{2n+1}+c^{2n+1}=b^{2n+1}-(-c)^{2n+1}$ is diviisble by $b-(-c)=b+c$

$\implies b+c=0\implies b^{2n+1}+c^{2n+1}=0\implies a^{2n+1}+b^{2n+1}+c^{2n+1}=? $

Similarly, if $c+a=0$ or if $a+b=0$