Let $I \subset \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$ be a function and let $n \geq 2, n \in \mathbb{N}$ be fixed number.
Let's consider the following conditions:
$\displaystyle f\left(\frac{x_1+x_2}{2}\right) \leq \frac{f(x_1)+f(x_2)}{2} \textrm{ for } x_1, x_2 \in I$;
$\displaystyle f\left(\frac{x_1+...+x_n}{n}\right) \leq \frac{f(x_1)+...+f(x_n)}{n} \textrm{ for } x_1,...,x_n \in I$.
By https://math.stackexchange.com/a/83398/22907 1. implies 2.
Does 2. imply 1. ?