Here are two examples which might be useful
- Example 1: Generalize in order to use techniques from analysis resp. formal operator techniques
Problem: Evaluate
$$\sum_{k=1}^{n}\frac{k^2}{2^k}$$
This can be done by instead evaluating
$$\sum_{k=1}^{n}k^2x^k$$
For $x\neq 1$ we know that
$$S(x)=\sum_{k=1}^{n}x^k=\frac{1-x^{n+1 }}{1-x}$$
Now differentiating each side and multiplying with $x$ we get
\begin{align*}
(xD)S(x)&=\sum_{k=1}^{n}kx^{k}\\
&=(xD)\frac{1-x^{n+1 }}{1-x}\\
&=\left(1-(n+1)x^n+nx^{n+1}\right)\frac{x}{\left(1-x\right)^2}
\end{align*}
Differentiating again each side and multiplying with $x$ we get
\begin{align*}
{(xD)}^2S(x)&=\sum_{k=1}^{n}k^2x^{k}\\
&=(xD)^2\frac{1-x^{n+1 }}{1-x}\\
&=\left(1+x-(n+1)^2x^n-(2n^2+2n-1)x^{n+1}-n^2x^{n+2}\right)\frac{x}{\left(1-x\right)^3}
\end{align*}
We conclude
\begin{align*}
S\left(\frac{1}{2}\right)&=\sum_{k=1}^{n}\frac{k^2}{2^k}\\
&=\left(\frac{3}{2}-(n+1)^2\frac{1}{2^n}-(2n^2+2n-1)\frac{1}{2^{n+1}}-n^2\frac{1}{n+2}\right)\cdot 4\\
&=6-\frac{1}{2^n}\left(n^2+4n+6\right)
\end{align*}
Another example where generalization is useful
- Example 2: Generalize integrals by introducing a parameter and use the technique of parameter differentiation
Problem: Evaluate
$$\int_{0}^{\infty}\frac{\sin^2 x}{x^2}dx$$
given that $\int_{0}^{\infty}\frac{\sin x}{x}dx=\frac{1}{2}\pi$.
The idea is to introduce a parameter and evaluate the more general integral
\begin{align*}
I(a)=\int_{0}^{\infty}\frac{\sin^2 (ax)}{x^2}dx,\qquad a\geq 0\tag{1}
\end{align*}
and use parameter differentiation.
Differentiating each side of (1) with respect to $a$, we get
\begin{align*}
I^{\prime}(a)&=\int_{0}^{\infty}\frac{2\sin (ax)\cos (ax)\cdot x}{x^2}dx\\
&=\int_{0}^{\infty}\frac{2\sin (2ax)}{x}dx\\
\end{align*}
Now substituting $y=2ax$, we get $dy = 2a dx$, and
\begin{align*}
I^{\prime}(a)&=\int_{0}^{\infty}\frac{\sin y}{y}dx=\frac{1}{2}\pi\\
\end{align*}
Integrating each side gives
$$I(a) =\frac{1}{2}\pi a+C,\qquad C \text{ constant}$$
Since $I(0)=0$, we get $C=0$. Thus $I(a)=\frac{1}{2}\pi a, a\geq 0$. Setting $a=1$ yields
$$I(1)= \int_{0}^{\infty}\frac{\sin ^2 x}{x^2}dx = \frac{1}{2}\pi$$
Note: The examples above can be found in Problem-Solving Through Problems. They are stated as problems 1.12.1 and 1.12.3 in chapter 1.12 Generalize.