This answer is based on the comments of Lucian and especially Winther.
Expand
$$
e^{(x^n \log x)} = \sum_{k=0}^\infty \frac{(x^{n})^k(\log x)^k}{k!}
$$
Therefore we have
$$
\int_\epsilon^1 e^{(x^n \log x)}\,\mathrm{d}x = \int_\epsilon^1 \sum_{n=0}^\infty \frac{(x^{n})^k(\log x)^k}{k!} \,\mathrm{d}x
$$
By uniform convergence of the power series, we may interchange summation and integration
$$
\int_\epsilon^1 e^{(x^n \log x)}\,\mathrm{d}x = \sum_{n=0}^\infty \int_\epsilon^1 \frac{x^{nk}(\log x)^k}{k!}\,\mathrm{d}x.
$$
According to Wikpedia
$\int x^m (\ln x)^k\,\mathrm{d}x
= \frac{x^{m+1}}{m+1}
\cdot \sum_{i=0}^k (-1)^i \frac{(k)_i}{(m+1)^i} (\ln x)^{k-i}$ for all $m\neq -1$ where $(k)_i$ denotes the falling factorial. Set $m=kn$. Then
\begin{align}
\int_\epsilon^1 \frac{x^{kn}(\ln x)^k}{k!}\,\mathrm{d}x
=& \sum_{i=0}^k (-1)^i
\frac{1}{k!}\cdot\frac{x^{kn+1}}{(km+1)}
\cdot \frac{(k)_i}{(km+1)^i} (\ln x)^{k-i}\Bigg|_\epsilon^1
\\
=&\sum_{i=0}^k (-1)^{i+1}
\frac{1}{k!}\cdot\frac{x^{kn+1}}{(km+1)}
\cdot \frac{(k)_i}{(km+1)^i} (\ln \epsilon)^{k-i}
\end{align}
and finally
$$
\int_\epsilon^1 e^{x^n\log(x)}\,\mathrm{d}x
=
\sum_{k=0}^\infty
\sum_{i=0}^k (-1)^{i+1}
\frac{1}{k!}
\cdot
\frac{x^{kn+1}}{(km+1)}
\cdot
\frac{(k)_i}{(km+1)^i} (\ln \epsilon)^{k-i}
$$