This gate, which I'll denote as $U$ is essentially the square root of not gate, whose decomposition has already been discussed elsewhere. Hence, we only need the conversion:
Specifically, if we perform the corresponding matrix multiplications, we have
$$
\left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i \\
\end{array}
\right)\cdot\left(\left(
\begin{array}{cc}
1 & 0 \\
0 & e^{-\frac{i \pi }{4}} \\
\end{array}
\right)\otimes \left(
\begin{array}{cc}
1 & 0 \\
0 & e^{-\frac{i \pi }{4}} \\
\end{array}
\right)\right)\cdot\left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{e^{\frac{i \pi }{4}}}{\sqrt{2}} & \frac{e^{-\frac{i \pi }{4}}}{\sqrt{2}} & 0 \\
0 & \frac{e^{-\frac{i \pi }{4}}}{\sqrt{2}} & \frac{e^{\frac{i \pi }{4}}}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)=\\
\left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0 \\
0 & -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
as required.