I'm struggling to find if $\text{Rx}(\theta)$ gate would convert a pure state qubit $|0\rangle$ to a superposition $\cos( \theta) |0\rangle + \sin(\theta) |1\rangle$.
A definitive answer with reference will be appreciated.
I'm struggling to find if $\text{Rx}(\theta)$ gate would convert a pure state qubit $|0\rangle$ to a superposition $\cos( \theta) |0\rangle + \sin(\theta) |1\rangle$.
A definitive answer with reference will be appreciated.
In Nielsen and Chuang it is given that the matrix represntation of $R_X(\theta)$ is $$R_X(\theta) = \begin{pmatrix} \cos\frac\theta2 & -i\sin\frac\theta2 \\ -i\sin\frac\theta2 & \cos\frac\theta2 \end{pmatrix}.$$ From this you can see that $\vert 0 \rangle$ is sent to a superposition of $\vert 0 \rangle$ and $\vert 1 \rangle$ unless $\sin\frac\theta2 = 0$ or $\cos\frac\theta2=0$ so $\theta = 0$ or $\theta = \pi$.
So for $\theta=0$, we have $R_X(\theta) \vert 0 \rangle = \vert 0 \rangle$, and for $\theta=\pi$, we have $R_X(\theta)\vert 0 \rangle = \vert 1 \rangle$, but for all other $\theta$ you will get a superposition, namely $\cos\frac\theta2 \vert 0 \rangle - i \sin\frac\theta2 \vert 1 \rangle$.