Suppose the below operator $$ x\sum_{n=0}^{\infty}\tanh^{2n}(r)|0,n\rangle\langle 0,n| +y\sum_{n=0}^{\infty}\tanh^{2n}(r)|1,n\rangle\langle 1,n| +z\sum_{n=0}^{\infty}\tanh^{2n}(r)(n+1)|1,n\rangle\langle 0,n+1|+z\sum_{n=0}^{\infty}\tanh^{2n}(r)(n+1)|0,n+1\rangle\langle 1,n|+q\sum_{n=0}^{\infty}\tanh^{2n}(r)|0,n+1\rangle\langle 0,n+1| $$
I wanted to obtain the matrix representation of sectors $n$ and $n+1$ on basis $\{|0,n\rangle,|0,n+1\rangle,|1,n\rangle,|1,n+1\rangle\}$
These are my calculations
- $\langle0,n|\rho|0,n\rangle = x\tanh^{2n}+q\tanh^{2n-2}$
- $\langle1,n|\rho|1,n\rangle = y\tanh^{2n}$
- $\langle1,n|\rho|0,n+1\rangle=z\tanh^{2n}$
- $\langle0,n+1|\rho|1,n\rangle=z\tanh^{2n}$
- $\langle0,n+1|\rho|0,n+1\rangle=x\tanh^{2n+2}+q\tanh^{2n}$
- $\langle1,n+1|\rho|1,n+1\rangle=y\tanh^{2n+2}$
The rest of the elements are 0
I feel there is something wrong
What did i miss? did i calculate them correctly?