The issue is
1.which one is right? \begin{align} & (|{{w}_{1}}...{{w}_{n}}\rangle {{)}^{\dagger }}=\langle {{w}_{1}}...{{w}_{n}}|? \\ & (|{{w}_{1}}...{{w}_{n}}\rangle {{)}^{\dagger }}=\langle {{w}_{n}}...{{w}_{1}}|? \\ & (|{{w}_{1}}{{U}_{1}}{{w}_{n}}\rangle {{)}^{\dagger }}=\langle {{w}_{1}}U_{1}^{\dagger }{{w}_{n}}|? \\ & (|{{w}_{1}}{{U}_{1}}{{w}_{n}}\rangle {{)}^{\dagger }}=\langle {{w}_{n}}U_{1}^{\dagger }{{w}_{1}}|? \\ \end{align}
2.judge whether it is correct \begin{align} & \langle w_{2}^{{}}w_{1}^{{}}\text{ }\!\!|\!\!\text{ }{{w}_{1}}{{U}_{q2}}{{w}_{2}}\rangle \text{?=}\langle w_{2}^{{}}\text{ }\!\!|\!\!\text{ }{{U}_{q2}}\text{ }\!\!|\!\!\text{ }{{w}_{2}}\rangle \\ & \to \langle w_{2}^{{}}\text{ }\!\!|\!\!\text{ }\otimes \langle w_{1}^{{}}\text{ }\!\!|\!\!\text{ }{{w}_{1}}\rangle \otimes \text{ }\!\!|\!\!\text{ }{{U}_{q2}}{{w}_{2}}\rangle \overset{\langle w_{1}^{{}}\text{ }\!\!|\!\!\text{ }{{w}_{1}}\rangle \text{=}1}{\mathop{\text{?=}}}\,\langle w_{2}^{{}}\text{ }\!\!|\!\!\text{ }{{U}_{q2}}\text{ }\!\!|\!\!\text{ }{{w}_{2}}\rangle \\ & \\ & \langle w_{2}^{{}}U_{q2}^{\dagger }w_{1}^{{}}|{{U}_{k1}}{{w}_{1}}{{w}_{2}}\rangle \text{?=}\langle w_{2}^{{}}w_{1}^{{}}|{{U}_{q2}}{{U}_{k1}}|{{w}_{1}}{{w}_{2}}\rangle \\ & \to \langle w_{2}^{{}}\text{ }\!\!|\!\!\text{ }\otimes \langle w_{1}^{{}}\text{ }\!\!|\!\!\text{ }U_{q2}^{{}}{{U}_{k1}}|{{w}_{1}}\rangle \otimes \text{ }\!\!|\!\!\text{ }{{w}_{2}}\rangle \\ \end{align}
3.$$(|{{w}_{1}},{{U}_{2}}{{w}_{3}}\rangle {{)}^{\dagger }}=\langle {{w}_{1}},{{U}_{2}}{{w}_{3}}|=\langle {{w}_{1}},{{w}_{3}}|U_{2}^{\dagger }$$
The above two formulas are my own. The confusion of the first formula is when the quantum operator is moved and it is found that the Bar and Ket of W1 are closely adjacent, so whether it can be eliminated by the inner product. The second formula wants to separate the operators in the formula, and I don't know whether the result is correct. The above rules are all inspired by a book "QUANTUM COMPUTING From Linear Algebra to Physical Realizations".