You can also do it by expanding the terms in the exponential:
$$
e^{i\frac{\pi}{4}(I−Z)\otimes(I−X)} = e^{i\frac{\pi}{4}(II - IX - ZI + ZX)}
$$
here I omitted the tensor product, e.g $II = I \otimes I$. Then you can group the diagonal and no diagonal operators as:
$$
e^{i\frac{\pi}{4}([II - ZI] + [ZX - IX])} = e^{i\frac{\pi}{4} \bigl( \bigl[ \begin{smallmatrix}0 & 0\\ 0 & 2I\end{smallmatrix}\bigr] + \bigl[ \begin{smallmatrix}0 & 0\\ 0 & -2X\end{smallmatrix}\bigr] \bigr)}
$$
The matrices $\bigl[ \begin{smallmatrix}0 & 0\\ 0 & 2I\end{smallmatrix}\bigr] $ and $ \bigl[ \begin{smallmatrix}0 & 0\\ 0 & -2X\end{smallmatrix}\bigr]$ commute, so we can write:
$$ e^{i\frac{\pi}{4} \bigl( \bigl[ \begin{smallmatrix}0 & 0\\ 0 & 2I\end{smallmatrix}\bigr] + \bigl[ \begin{smallmatrix}0 & 0\\ 0 & -2X\end{smallmatrix}\bigr] \bigr)} = e^{i\frac{\pi}{4} \bigl[ \begin{smallmatrix}0 & 0\\ 0 & 2I\end{smallmatrix}\bigr] } e^{i\frac{\pi}{4} \bigl[ \begin{smallmatrix}0 & 0\\ 0 & -2X\end{smallmatrix}\bigr] }$$
this becomes:
$$ \begin{pmatrix} I & 0 \\ 0 & iI\end{pmatrix}\begin{pmatrix} I & 0 \\ 0 & e^{-i\frac{\pi}{2}X}\end{pmatrix} $$
using the property $e^{iaX} = \cos(a)I + i X \sin(a) $ with $a=\frac{\pi}{2}$ (you can look it up in the section 'Exponential of a Pauli vector' in https://en.wikipedia.org/wiki/Pauli_matrices ) you get $e^{-i\frac{\pi}{2}X} = - i X $. So finally:
$$ \begin{pmatrix} I & 0 \\ 0 & iI\end{pmatrix}\begin{pmatrix} I & 0 \\ 0 & -iX\end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & X \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \\ 0 & 0 & 0 & 1
\\ 0 & 0 & 1 & 0\end{pmatrix}$$