Another easy method for me. If $\rho=|\psi\rangle\langle\psi|$, then we have
$$
Tr\left( \rho ^2 \right) =1=Tr\left( \left( p\sigma +\left( 1-p \right) \tau \right) ^2 \right)
\\
=Tr\left( p^2\sigma ^2+\left( 1-p \right) ^2\tau ^2+p\left( 1-p \right) \left( \sigma \tau +\tau \sigma \right) \right)
\\
=p^2Tr\left( \sigma ^2 \right) +\left( 1-p \right) ^2Tr\left( \tau ^2 \right) +p\left( 1-p \right) Tr\left( \sigma \tau +\tau \sigma \right)
\\
\le p^2+\left( 1-p \right) ^2+2p\left( 1-p \right) =1
$$
where $Tr\left( \sigma \tau +\tau \sigma \right) \le 2$ can be shown by mind that
$$
Tr\left( \sigma \tau +\tau \sigma \right)
\\
=2\mathrm{Re}Tr\left( \sigma \tau \right)
\\
=2\mathrm{Re}Tr\left( \sum_i{p_i|i\rangle \langle i|\sum_j{q_j|j\rangle \langle j|}} \right)
\\
=2\sum_{ij}{p_iq_j\left| \langle i|j\rangle \right|^2}
\\
\le 2
$$
So we must have $\tau=\sigma=|\psi\rangle\langle\psi|=\rho$.
Another direction: if $\rho$ can not be written as $\rho =p\sigma +\left( 1-p \right) \tau$, then it must be pure state, we can transfer this into if $\rho$ is a mixed state, then it must can be written into $\rho =p\sigma +\left( 1-p \right) \tau$. Which can be shown by deduction while I will only give an example to show this. If $\rho =p_1|1\rangle \langle 1|+p_2|2\rangle \langle 2|+p_3|3\rangle \langle 3|$, then we have $\rho =p_1|1\rangle \langle 1|+\left( 1-p_1 \right) \left( \frac{p_2}{1-p_1}|2\rangle \langle 2|+\frac{p_3}{1-p_1}|3\rangle \langle 3| \right)$, and take $\sigma =|1\rangle \langle 1|$ and $\tau =\frac{p_2}{1-p_1}|2\rangle \langle 2|+\frac{p_3}{1-p_1}|3\rangle \langle 3|$, we finish the proof.