I'm studying the parameter shift rule and got stuck when doing an example with Pauli operators in https://arxiv.org/abs/1803.00745.
With $f=e^{-i\mu\frac{\sigma_i}{2}}$, $\partial_\mu f=\frac{(-i\sigma_i)}{2}f=(-\frac{1}{2}if)\sigma_i$ (1).
Because $\frac{1}{2}\sigma_i$ has eigenvalues $\pm\frac{1}{2}$, so $r=1/2$ and $s=\frac{\pi}{4r}=\frac{\pi}{2}$.
$\rightarrow\partial_\mu f=\frac{1}{2}(f(\mu+\frac{\pi}{2})-f(\mu-\frac{\pi}{2}))$
$ =\frac{1}{2}(e^{-i(\mu+\frac{\pi}{2})\frac{\sigma_i}{2}}-e^{-i(\mu-\frac{\pi}{2})\frac{\sigma_i}{2}}) $
$ =\frac{1}{2}(e^{-i(\frac{\pi}{4}\sigma_i)}-e^{i(\frac{\pi}{4}\sigma_i)}) f(\mu) $
$ =-\frac{1}{2}i(2\sin(\frac{\pi}{4}\sigma_i)) f(\mu)=-\frac{1}{2}i(\frac{2}{\sqrt{2}}\sigma_i) f(\mu) $ (2)
The results from (1) and (2) seem to not be the same, I don't know what points I missed.
Thanks for reading!