We can say that
$X (\cos \frac{\theta}{2} |0\rangle + e^{i \phi}\sin \frac{\theta}{2} |1\rangle) = \cos \frac{\pi-\theta}{2} |0\rangle + e^{-i \phi}\sin \frac{\pi-\theta}{2} |1\rangle$,
a fact that can be derived by multiplying the $X$ matrix and the state vector and using angle identities:
$X (\cos \frac{\theta}{2} |0\rangle + e^{i \phi}\sin \frac{\theta}{2} |1\rangle) = e^{i \phi}\sin \frac{\theta}{2} |0\rangle + \cos \frac{\theta}{2} |1\rangle = e^{i \phi}\cos \frac{\pi - \theta}{2} |0\rangle + \sin \frac{\pi - \theta}{2} |1\rangle = \cos \frac{\pi-\theta}{2} |0\rangle + e^{-i \phi}\sin \frac{\pi-\theta}{2} |1\rangle$
Is there a writeup somewhere or a standard way to derive this identity for other gates, i.e. $Y, Z, H, \sqrt{Y}$?