From Nielsen and Chuang's book: $\textit{Quantum computation and quantum information}$, how can (5.34) equal (5.33)? I.e.
$$\dfrac{1}{2} \int_{e-1}^{2^{t-1}-1} dl \dfrac{1}{l^2} = \dfrac{1}{2(e-1)}.$$
From Nielsen and Chuang's book: $\textit{Quantum computation and quantum information}$, how can (5.34) equal (5.33)? I.e.
$$\dfrac{1}{2} \int_{e-1}^{2^{t-1}-1} dl \dfrac{1}{l^2} = \dfrac{1}{2(e-1)}.$$
It is a typo as mentioned in the comments by M Stern
$$ \dfrac{1}{2} \int_{e-1}^\infty \dfrac{1}{l^2} dl = \dfrac{1}{2(e-1)} $$
– KAJ226 Nov 29 '20 at 18:57