With regard to this question/answer:
How's the generalized behaviour of a two-qubit gate for the resulting two qubits?
Here e.g. CNOT:
If I apply the CNOT matrix to the tensor product, also the control qubit seems to get affected:
Control qubit
$$ \text{ctrl} = \begin{pmatrix} x \\ y \end{pmatrix} $$
Target qubit $$ \text{target} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} $$
Tensor product tp:
$$ \text{tp} = \text{ctrl} \otimes \text{target} = \begin{pmatrix} x \\ y \end{pmatrix} \otimes \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} x\alpha \\ x\beta \\ y\alpha \\ y\beta \end{pmatrix} $$
Applying the CNOT gate with control qubit a and target qubit b:
$$ \text{res}_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} x\alpha \\ x\beta \\ y\alpha \\ y\beta \end{pmatrix} = \begin{pmatrix} x\alpha \\ x\beta \\ y\beta \\ y\alpha \end{pmatrix} $$
How to get the two results for the both qubits a and b out of this res1 vector representation (tensor product of the two resulting qubits?)?
Acc. to the linked answer, the resulting value for the target qubit b may be the vector built from the upper two values, i.e.
$$ \text{res}_\text{target} = \begin{pmatrix} x\alpha \\ x\beta \end{pmatrix} $$
Does the control qubit also get affected in that case? e.g.
$$ \text{res}_\text{ctrl} = \begin{pmatrix} y\beta \\ y\alpha \end{pmatrix} $$
Clearly building the tensor product of those two results wouldn't result in the