$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{x_{0}\equiv{M \over 2},\quad
x_{n+1}\equiv\half\,\pars{x_{n} + {M \over x_{n}}}.\qquad M \geq 0.}$
Let's $\ds{y_{n} = {x_{n} \over \root{M}}\quad\imp\quad
y_{n + 1} = \half\pars{y_{n} + {1 \over y_{n}}}\,,\quad y_{0} = {\root{M} \over 2}}$
\begin{align}
{y_{n + 1} + 1 \over y_{n + 1} - 1}&
={\half\pars{y_{n} + 1/y_{n}} + 1 \over \half\pars{y_{n} + 1/y_{n}} - 1}
={y_{n}^{2} + 2y_{n} + 1 \over y_{n}^{2} - 2y_{n} + 1}
=\pars{y_{n} + 1 \over y_{n} - 1}^{2}
\end{align}
\begin{align}
{y_{n + 1} + 1 \over y_{n + 1} - 1}&
=\pars{y_{n - 1} + 1 \over y_{n - 1} - 1}^{4}
=\pars{y_{n - 2} + 1 \over y_{n - 2} - 1}^{8}=\cdots
=\pars{y_{0} + 1 \over y_{0} - 1}^{2^{n + 1}}
\end{align}
$$
y_{n + 1} = {\pars{y_{0} + 1}^{2^{n + 1}} + \pars{y_{0} - 1}^{2^{n + 1}}
\over \pars{y_{0} + 1}^{2^{n + 1}} - \pars{y_{0} - 1}^{2^{n + 1}}}
$$
Now, you can take from here.