Prove: If $n = 2^k - 1$ for $k \in \mathbb{N}$, then every entry in row $n$ of pascal's triangle is odd.
I know that the $n$th row in pascal's triangle correspond to the coefficients of $(x+y)^n$:
$$\begin{align}(x+y)^n = {n \choose 0} x^n + {n \choose 1} x^{n-1} y + {n \choose 2}x^{n-2}y^2+{n \choose 3} x^{n-3} + \cdots + {n \choose n-1} xy^{n-1}+{n \choose n} y^n \end{align}.$$
I have to show that each coefficient $\begin{align} {n \choose 0},{n \choose 1},{n \choose 2},\ldots,{n \choose n-1},{n \choose n} \end{align}$ is of the form $2b+1$, but I'm not sure how to do this with $n =2^k-1$.