$$|x^2-1|< 1/n$$ for a give n is a natural number.
Here is my own solution, please check it for me: $$|x^2 -1|=|x+1||x-1| \leq (|x+1|)|x-1|.$$ $$ |x|=|x-1|+1.$$ we chose $$\delta_1=1$$ Then if $$ |x-1|\lt\delta_1=1 $$ We have $$|x|\leq|x-1|+1<1+1=2. $$$$|x^2 -1|=|x+1||x-1| \leq (|x+1|)|x-1|\leq (2+1)|x-1|$$. We choose $$\delta=\min\left(1,\frac1{3n}\right) = \frac1{3n}$$ Then $$|x^2-1|\leq3|x-1|<3\cdot\left(\frac1{3n}\right)=\frac1n$$ Thus, if$$|x-1|<\frac1{3n}$$ Then $$|x^2-1|<\frac1n$$